Answers to Review Questions
1. Discuss the importance of data modeling.

A data model is a relatively simple representation, usually graphical, of a more
complex real world object event. The data model’s main function is to help us
understand the complexities of the real-world environment. The database designer
uses data models to facilitate the interaction among designers, application
programmers, and end users. In short, a good data model is a communications device
that helps eliminate (or at least substantially reduce) discrepancies between the
database design’s components and the real world data environment. The development
of data models, bolstered by powerful database design tools, has made it possible to
substantially diminish the database design error potential. (Review Section 2.1 in
detail.)

2. What is a business rule, and what is its purpose in data modeling?

A business rule is a brief, precise, and unambigous description of a policy, procedure,
or principle within a specific organization’s environment. In a sense, business rules
are misnamed: they apply to any organization -- a business, a government unit, a
religious group, or a research laboratory; large or small -- that stores and uses data to
generate information.

Business rules are derived from a description of operations. As its name implies, a
description of operations is a detailed narrative that describes the operational
environment of an organization. Such a description requires great precision and detail.
If the description of operations is incorrect or inomplete, the business rules derived
from it will not reflect the real world data environment accurately, thus leading to
poorly defined data models, which lead to poor database designs. In turn, poor
database designs lead to poor applications, thus setting the stage for poor decision
making — which may ultimately lead to the demise of the organization.

Note especially that business rules help to create and enforce actions within that
organization’s environment. Business rules must be rendered in writing and updated
to reflect any change in the organization’s operational environment.

Properly written business rules are used to define entities, attributes, relationships, and
constraints. Because these components form the basis for a database design, the
careful derivation and definition of business rules is crucial to good database design.

3. How do you translate business rules into data model components?
As a general rule, a noun in a business rule will translate into an entity in the model,

and a verb (active or passive) associating nouns will translate into a relationship
among the entities. For example, the business rule “a customer may generate many

invoices” contains two nouns (customer and invoice) and a verb (“generate”) that
associates them.

4. Describe the basic features of the relational data model and discuss their
importance to the end user and the designer.

A relational database is a single data repository that provides both structural and data
independence while maintaining conceptual simplicity.

The relational database model is perceived by the user to be a collection of tables in
which data are stored. Each table resembles a matrix composed of row and columns.
Tables are related to each other by sharing a common value in one of their columns.

The relational model represents a breakthrough for users and designers because it lets
them operate in a simpler conceptual environment. End users find it easier to visualize
their data as a collection of data organized as a matrix. Designers find it easier to deal
with conceptual data representation, freeing them from the complexities associated
with physical data representation.

5. Explain how the entity relationship (ER) model helped produce a more structured
relational database design environment.

An entity relationship model, also known as an ERM, helps identify the database's main
entities and their relationships. Because the ERM components are graphically
represented, their role is more easily understood. Using the ER diagram, it’s easy to
map the ERM to the relational database model’s tables and attributes. This mapping
process uses a series of well-defined steps to generate all the required database
structures. (This structures mapping approach is augmented by a process known as
normalization, which is covered in detail in Chapter 6 “Normalization of Database
Tables.”)

6. Consider the scenario described by the statement “A customer can make many
payments, but each payment is made by only one customer” as the basis for an
entity relationship diagram (ERD) representation.

This scenario yields the ERDs shown in Figure Q2.6. (Note the use of the PowerPoint
Crow’s Foot template. We will start using the Visio Professional-generated Crow’s
Foot ERDs in Chapter 3, but you can, of course, continue to use the template if you do
not have access to Visio Professional.)

Figure Q2.6 The Chen and Crow’s Foot ERDs for Question
6

Chen model

1 M

CUSTOMER PAYMENT

Crow’s Foot model

makes
}< PAYMENT

CUSTOMER H

NOTE
Remind your students again that we have not (yet) illustrated the effect of optional
relationships on the ERD’s presentation. Optional relationships and their treatment are
covered in detail in Chapter 4, “Entity Relationship (ER) Modeling.”

7. Why is an object said to have greater semantic content than an entity?

An object has greater semantic content because it embodies both data and behavior.
That is, the object contains, in addition to data, also the description of the operations
that may be performed by the object.

8. What is the difference between an object and a class in the object oriented data
model (OODM)?

An object is an instance of a specific class. It is useful to point out that the object is a
run-time concept, while the class is a more static description.

Objects that share similar characteristics are grouped in classes. A class is a collection
of similar objects with shared structure (attributes) and behavior (methods.) Therefore,
a class resembles an entity set. However, a class also includes a set of procedures
known as methods.

9. How would you model Question 6 with an OODM? (Use Figure 2.4 as your guide.)

The OODM that corresponds to question 6’s ERD is shown in Figure Q1.9:

Figure Q2.9 The OODM Model for Question 9

CUSTOMER

PAYMENT

10. What is an ERDM, and what role does it play in the modern (production) database
environment?

The Extended Relational Data Model (ERDM) is the relational data model’s response
to the Object Oriented Data Model (OODM.) Most current RDBMSes support at least
a few of the ERDM’s extensions. For example, support for large binary objects
(BLOBS) is now common.

Although the "ERDM" label has frequently been used in the database literature to
describe the relational database model's response to the OODM's challenges, C. J. Date
objects to the ERDM label for the following reasons: *

e The useful contribution of "the object model” is its ability to let users define
their own -- and often very complex -- data types. However, mathematical
structures known as "domains™ in the relational model also provide this
ability. Therefore, a relational DBMS that properly supports such domains
greatly diminishes the reason for using the object model. Given proper
support for domains, relational database models are quite capable of handling
the complex data encountered in time series, engineering design, office
automation, financial modeling, and so on. Because the relational model can
support complex data types, the notion of an "extended relational database
model” or ERDM is "extremely inappropriate and inaccurate™ and "it should
be firmly resisted.” (The capability that is supposedly being extended is
already there!)

e Even the label object/relational model (O/RDM) is not quite accurate,
because the relational database model's domain is not an object model
structure. However, there are already quite a few O/R products -- also known
as Universal Database Servers -- on the market. Therefore, Date concedes
that we are probably stuck with the O/R label. In fact, Date believes that "an
O/R system is in everyone's future." More precisely, Date argues that a true

1 C. J. Date, "Back To the Relational Future", http://www.dbpd.com/vault/9808date.html

11.

12.

13.

O/R system would be "nothing more nor less than a true relational system --
which is to say, a system that supports the relational model, with all that such
support entails.”

C. J. Date concludes his discussion by observing that "We need do nothing to the
relational model achieve object functionality. (Nothing, that is, except implement it,
something that doesn't yet seem to have been tried in the commercial world.)"

What is a relationship, and what three types of relationships exist?

A relationship is an association among (two or more) entities. Three types of
relationships exist: one-to-one (1:1), one-to-many (1:M), and many-to-many (M:N or
M:M.)

Give an example of each of the three types of relationships.

1:1
An academic department is chaired by one professor; a professor may chair only one
academic department.

1:M
A customer may generate many invoices; each invoice is generated by one customer.

M:N
An employee may have earned many degrees; a degree may have been earned by many
employees.

What is a table, and what role does it play in the relational model?

Strictly speaking, the relational data model bases data storage on relations. These
relations are based on algebraic set theory. However, the user perceives the relations
to be tables. In the relational database environment, designers and users perceive a
table to be a matrix consisting of a series of row/column intersections.Tables, also
called relations, are related to each other by sharing a common entity characteristic.
For example, an INVOICE table would contain a customer number that points to that
same number in the CUSTOMER table. This feature enables the RDBMS to link
invoices to the customers who generated them.

Tables are especially useful from the modeling and implementation perspecectives.
Because tables are used to describe the entities they represent, they provide ane asy
way to summarize entity characteristics and relationships among entities. And,
because they are purely conceptual constructs, the designer does not need to be
concerned about the physical implementation aspects of the database design.

14. What is a relational diagram? Give an example.

15.

16.

A relational diagram is a visual representation of the relational database’s entities, the
attributes within those entities, and the relationships between those entities. Therefore,
it is easy to see what the entities represent and to see what types of relationships (1:1,
1:M, M:N) exist among the entities and how those relationships are implemented. An
example of a relational diagram is found in the text’s Figure 2.2.

What is connectivity? (Use a Crow’s Foot ERD to illustrate connectivity.)

Connectivity is the relational term to describe the types of relationships (1:1, 1:M,
M:N).

ADWISOR STUDEMT YWEHICLE

A

CLASS

In the figure, the businesss rule that an advisor can advise many students and a student
has only one assigned advisor is shown with in a relationship with a connectivity of
1:M. The business rule that a student can register only one vehicle to park on campus
and a vehicle can be registered by only one student is shown with a relationship with a
connectivity of 1:1. Finally, the rule that a student can register for many classes, and a
class can be registered for by many students, is shown by the relationship with a
connectivity of M:N.

Describe the Big Data phenomenon.

Over the last few years, a new wave of data has “emerged” to the limelight. Such data
have alsways exsisted but did not recive the attention that is receiving today. These
data are characterized for being high volume (petabyte size and beyond), high
frequency (data are generated almost constantly), and mostly semi-structured. These
data come from multiple and vatied sources such as web site logs, web site posts in
social sites, and machine generated information (GPS, sensors, etc.) Such data; have
been accumulated over the years and companies are now awakining to the fact that it
contains a lot of hidden information that could help the day-to-day business (such as
browsing patterns, purchasing preferences, behaivor patterns, etc.) The need to manage

and leverage this data has triggered a phenomenon labeled “Big Data”. Big Data refers
to a movement to find new and better ways to manage large amounts of web-generated
data and derive business insight from it, while, at the same time, providing high
performance and scalability at a reasonable cost.

17.

18.

What does the term “3 vs” refers to?
The term “3 Vs” refers to the 3 basic characteristics of Big Data databases, they
are:

e Volume: Refers to the amounts of data being stored. With the adoption and
growth of the Internet and social media, companies have multiplied the
ways to reach customers. Over the years, and with the benefit of
technological advances, data for millions of e-transactions were being
stored daily on company databases. Furthermore, organizations are using
multiple technologies to interact with end users and those technologies are
generating mountains of data. This ever-growing volume of data quickly
reached petabytes in size and it's still growing.

e Velocity: Refers not only to the speed with which data grows but also to the
need to process these data quickly in order to generate information and
insight. With the advent of the Internet and social media, business responses
times have shrunk considerably. Organizations need not only to store large
volumes of quickly accumulating data, but also need to process such data
quickly. The velocity of data growth is also due to the increase in the
number of different data streams from which data is being piped to the
organization (via the web, e-commerce, Tweets, Facebook posts, emails,
sensors, GPS, and so on).

e Variety: Refers to the fact that the data being collected comes in multiple
different data formats. A great portion of these data comes in formats not
suitable to be handled by the typical operational databases based on the
relational model.

The 3 Vs framework illustrates what companies now know, that the amount of data
being collected in their databases has been growing exponentially in size and
complexity. Traditional relational databases are good at managing structured data
but are not well suited to managing and processing the amounts and types of data
being collected in today's business environment.

What is Haddop and what are its basic components?

In order to create value from their previously unused Big Data stores, companies
are using new Big Data technologies. These emerging technologies allow
organizations to process massive data stores of multiple formats in cost-effective
ways. Some of the most frequently used Big Data technologies are Hadoop and
MapReduce.

e Hadoop is a Java based, open source, high speed, fault-tolerant distributed
storage and computational framework. Hadoop uses low-cost hardware to
create clusters of thousands of computer nodes to store and process data.
Hadoop originated from Google's work on distributed file systems and
parallel processing and is currently supported by the Apache Software

20.

Foundation.?Hadoop has several modules, but the two main components are
Hadoop Distributed File System (HDFS) and MapReduce.

e Hadoop Distributed File System (HDFS) is a highly distributed, fault-
tolerant file storage system designed to manage large amounts of data at
high speeds. In order to achieve high throughput, HDFS uses the write-once,
read many model. This means that once the data is written, it cannot be
modified. HDFS uses three types of nodes: a name node that stores all the
metadata about the file system; a data node that stores fixed-size data blocks
(that could be replicated to other data nodes) and a client node that acts as
the interface between the user application and the HDFS.

e MapReduce is an open source application programming interface (API) that
provides fast data analytics services. MapReduce distributes the processing
of the data among thousands of nodes in parallel. MapReduce works with
structured and nonstructured data. The MapReduce framework provides
two main functions, Map and Reduce. In general terms, the Map function
takes a job and divides it into smaller units of work; the Reduce function
collects all the output results generated from the nodes and integrates them
into a single result set.

19. What is sparse data? Give an example.

Sparse data refers to cases in which the number of attributes are very large, but the
numbers but the actual number of distinct value instances is relatively small. For
example, if you are modeling census data, you will have an entitty called person. This
entity person can have hundred of attributes, some of those attributes would be first
name, last name, degree, employer, income, veteran status, foreign born, etc. Although,
there would be many millions of rows of data for each person, there will be many
attributes that will be left blank, for example, not all persons will have a degree, an
income or an employer. Even fewer persons will be veterans or foreign born. Every
time that you have an data entity that has many columns but the data instances for the
columns are very low (many empty attribute occurrences) it is said that you have sparse
data.

There is another related terminoligy, data sparcity that refers to the number of different
values a fiven columns could have. In this case, a column such as “gender” although
it will have values for all rows, it has a low data sparcity because the number of different
values is ony two: male or female. A column such as name and birthdate will have high
data sparcity because the number of different values is high.

Define and describe the basic characteristics of a NoSQL database.

Every time you search for a product on Amazon, send messages to friends in
Facebook, watch a video in YouTube or search for directions in Google Maps, you

2 For more information about Hadoop visit hadoop.apache.org.

are using a NoSQL database. NoSQL refers to a new generation of databases that
address the very specific challenges of the “big data” era and have the following
general characteristics:

e Not based on the relational model.
These databases are generally based on a variation of the key-value data model
rather than in the relational model, hence the NoSQL name. The key-value data
model is based on a structure composed of two data elements: a key and a value;
in which for every key there is a corresponding value (or a set of values). The
key-value data model is also referred to as the attribute-value or associative data
model. In the key-value data model, each row represents one attribute of one
entity instance. The “key” column points to an attribute and the “value” column
contains the actual value for the attribute. The data type of the “value” column is
generally a long string to accommodate the variety of actual data types of the
values that are placed in the column.

e Support distributed database architectures.
One of the big advantages of NoSQL databases is that they generally use a
distributed architecture. In fact, several of them (Cassandra, Big Table) are
designed to use low cost commodity servers to form a complex network of
distributed database nodes

e Provide high scalability, high availability and fault tolerance.
NoSQL databases are designed to support the ability to add capacity (add
database nodes to the distributed database) when the demand is high and to do it
transparently and without downtime. Fault tolerant means that if one of the nodes
in the distributed database fails, the database will keep operating as normal.

e Support very large amounts of sparse data.
Because NoSQL databases use the key-value data model, they are suited to handle
very high volumes of sparse data; that is for cases where the number of attributes
is very large but the number of actual data instances is low.

e Geared toward performance rather than transaction consistency.
One of the biggest problems of very large distributed databases is to enforce data
consistency. Distributed databases automatically make copies of data elements at
multiple nodes — to ensure high availability and fault tolerance. If the node with
the requested data goes down, the request can be served from any other node with
a copy of the data. However, what happen if the network goes down during a data
update? In a relational database, transaction updates are guaranteed to be
consistent or the transaction is rolled back. NoSQL databases sacrifice
consistency in order to attain high levels of performance. NoSQL databases
provide eventual consistency. Eventual consistency is a feature of NoSQL
databases that indicates that data are not guaranteed to be consistent immediately
after an update (across all copies of the data) but rather, that updates will
propagate through the system and eventually all data copies will be consistent.

21. Using the example of a medical clinic with patients and tests, provide a simple
representation of how to model this example using the relational model and how
it wold be represented using the key-value data modeling technique.

As you can see in Figure Q2.21, the relational model stores

data in a tabular format in

which each row represents a “record” for a given patient. While, the key-value data
model uses three differnet fields to represent each data element in the record.
Therefore, for each patient row, there are three rows in the key-value model.

Clinic-R-Us

Data stored using relational model

-~ | PAT_L

LNAME -

Test Data

~

RIGLYCER - GLUCOSE -
12

Data stored using key-value model

PaTm | v | vaLue |

100 PAT_LMNAMWE Kolmyez

100 PAT_FNAWME George

100 PAT_DOB 15-Jun-1942

101 PAT_LMNAWE Lewis

101 PAT_FMNAWE Rhonda

101 PAT_DOB 10-har-2005

102 PAT_LNAWE “andam

102 PAT_FMNAWE Rhett

10z PAT_DOB 14 Mow-1052

Sample data...

1 TEST_DATE £/23/2009
PAT_MUR 100
HDL_CHOL 45
LOL_CHOL

TRIGLYCER

1z0
154
TEST_DATE 11132010
PAT_MUR 100

HDL_CHOL

1
1
1
1
bl
I
z 44
2

LDOL_CHOL 121

Sampledata...

22. What is logical independence?

Logical independence exists when you can change the internal model without

affecting the conceptual model.

When you discuss logical and other types of independence,
and review some basic modeling concepts and terminology:

it’s worthwhile to discuss

¢ Ingeneral terms, a model is an abstraction of a more complex real-world object

or event. A model’s main function is to help you understand the complexities
of the real-world environment. Within the database environment, a data model
represents data structures and their characteristics, relations, constraints, and
transformations. As its name implies, a purely conceptual model stands at the
highest level of abstraction and focuses on the basic ideas (concepts) that are
explored in the model, without specifying the details that will enable the
designer to implement the model. For example, a conceptual model would
include entities and their relationships and it may even include at least some of

the attributes that define the entities, but it would not include attribute details
such as the nature of the attributes (text, numeric, etc.) or the physical storage
requirements of those atttributes.

The terms data model and database model are often used interchangeably. In
the text, the term database model is be used to refer to the implementation of a
data model in a specific database system.

Data models (relatively simple representations, usually graphical, of more
complex real-world data structures), bolstered by powerful database design
tools, have made it possible to substantially diminish the potential for errors in
database design.

The internal model is the representation of the database as “seen” by the
DBMS. In other words, the internal model requires the designer to match the
conceptual model’s characteristics and constraints to those of the selected
implementation model.

An internal schema depicts a specific representation of an internal model,
using the database constructs supported by the chosen database.

The external model is the end users’ view of the data environment.

23. What is physical independence?

You have physical independence when you can change the physical model without
affecting the internal model. Therefore, a change in storage devices or methods and
even a change in operating system will not affect the internal model.

The terms physical model and internal model may require a bit of additional discussion:

The physical model operates at the lowest level of abstraction, describing the
way data are saved on storage media such as disks or tapes. The physical model
requires the definition of both the physical storage devices and the (physical)
access methods required to reach the data within those storage devices, making
it both software- and hardware-dependent. The storage structures used are
dependent on the software (DBMS, operating system) and on the type of storage
devices that the computer can handle. The precision required in the physical
model’s definition demands that database designers who work at this level have
a detailed knowledge of the hardware and software used to implement the
database design.

The internal model is the representation of the database as “seen” by the
DBMS. In other words, the internal model requires the designer to match the
conceptual model’s characteristics and constraints to those of the selected
implementation model. An internal schema depicts a specific representation
of an internal model, using the database constructs supported by the chosen
database.

Problem Solutions
Use the contents of Figure 2.1 to work problems 1-3.

1. Write the business rule(s) that governs the relationship between AGENT and
CUSTOMER.

Given the data in the two tables, you can see that an AGENT - through
AGENT_CODE -- can occur many times in the CUSTOMER table. But
each customer has only one agent. Therefore, the business rules may be
written as follows:

One agent can have many customers.

Each customer has only one agent.

Given these business rules, you can conclude that there is a 1:M
relationship between AGENT and CUSTOMER.

2. Given the business rule(s) you wrote in Problem 1, create the basic Crow’s Foot
ERD.

The Crow’s Foot ERD is shown in Figure P2.2a.

Figure P2.2a The Crow’s Foot ERD for Problem 3

AGENT H

= | CUSTOMER

For discussion purposes, you might use the Chen model shown in Figure
P2.2b. Compare the two representations of the business rules by noting the
different ways in which connectivities (1,M) are represented. The Chen
ERD is shown in Figure P2.2b.

Figure P2.2b The Chen ERD for Problem 2

Chen model

1 M

AGENT CUSTOMER

3. Using the ERD you drew in Problem 2, create the equivalent Object
representation and UML class diagram. (Use Figure 2.4 as your guide.)

The OO model is shown in Figure P2.3.

Figure P2.3a The OO Model for Problem 3

AGENT

CUSTOMER

Figure P.3b The UML Model for Problem 3

CUSTOMER
-Cus_Code
AGENT -Cus_LMName
-Agent_Code -Cus_FMarne
-Agent_LMame -Cus_nitial
-Agent FName -Cus_freaCode
-Agent_Initial -Cus_Phone
-Agent_AreaCode 0.1 a.r -Cus_lnsure_Type
-Agent_Phone -Cus_Insure_Amit
-Cus_Renew Date
-Agent_Code

Using Figure P2.4 as your guide, work Problems 4-5. The DealCo relational diagram
shows the initial entities and attributes for the DealCo stores, located in two regions
of the country.

STORE
% STORE_CODE

REGION
% REGIOMN_CODE

REGIOMN_DESCRIFT

STORE_MAME
STORE_YTD_SALES
REGION_CODE

[EMPLOVEE] JOB

. ¥ EMP_CODE L % J0B_CODE
EMP_TITLE JOB_DESCRIPTION
EMP_LNAME JOB_BASE_PAY
EMP_FNAME -
EMP_INITIAL
EMP_DOB
JOE_CODE -
STORE_CODE

Figure P2.4 The DealCo relational diagram

4.

Identify each relationship type and write all of the business rules.

One region can be the location for many stores. Each store is located in only one
region. Therefore, the relationship between REGION and STORE is 1:M.

Each store employs one or more employees. Each employee is employed by one store.
(In this case, we are assuming that the business rule specifies that an employee cannot
work in more than one store at a time.) Therefore, the relationship between STORE
and EMPLOYEE is 1:M.

A job - such as accountant or sales representative -- can be assigned to many
employees. (For example, one would reasonably assume that a store can have more
than one sales representative. Therefore, the job title “Sales Representative” can be
assigned to more than one employee at a time.) Each employee can have only one job
assignment. (In this case, we are assuming that the business rule specifies that an
employee cannot have more than one job assignment at a time.) Therefore, the
relationship between JOB and EMPLOYEE is 1:M.

5. Create the basic Crow’s Foot ERD for DealCo.

The Crow’s Foot ERD is shown in Figure P2.5a.

Figure P2.5a The Crow’s Foot ERD for DealCo

is location for
REGION - = STORE
employs
JOB H Is assigned to k| EmpLOYEE

The Chen model is shown in Figure P2.5b. (Note that you always read the relationship
from the “1” to the “M” side.)

Figure P2.5b The Chen ERD for DealCo

1 M
REGION @ STORE
1
1 M —
JOB EMPLOYEE

Using Figure P2.6 as your guide, work Problems 6—8 The Tiny College relational
diagram shows the initial entities and attributes for Tiny College.

COURSE [cLass [ENROLL [STUDENT
? CRS_CODE = 7 ClASS_CODE =22 ¢ (1455 CODE Ll @ sTu_Num
DEFT_CODE = CRS_CODE ? STU_NUM = STU_LNAME
CRS_DESCRIFTION CLASS_SECTION ENROLL_GRADE STU_FNAME
CRS_CREDIT CLASS_TIME STU_INIT
CLASS_ROOM 5TU_DOB
PROF_NUM STU_HRS
STU_CLASS
STU_GPA
STU_TRANSFER
DEPT_CODE
STU_PHOME
PROF_NUM

Figure P2.6 The Tiny College relational diagram
6. ldentify each relationship type and write all of the business rules.

The simplest way to illustrate the relationship between ENROLL, CLASS, and
STUDENT is to discuss the data shown in Table P2.6. As you examine the Table P2.6
contents and compare the attributes to relational schema shown in Figure P2.6, note
these features:
e We have added an attribute, ENROLL_SEMESTER, to identify the enrollment
period.
e Naturally, no grade has yet been assigned when the student is first enrolled, so
we have entered a default value “NA” for “Not Applicable.” The letter grade —
A, B, C, D, F, I (Incomplete), or W (Withdrawal) -- will be entered at the
conclusion of the enrollment period, the SPRING-12 semester.

e Student 11324 is enrolled in two classes; student 11892 is enrolled in three
classes, and student 10345 is enrolled in one class.

Table P2.6 Sample Contents of an ENROLL Table

STU_NUM | CLASS CODE | ENROLL_SEMESTER | ENROLL_GRADE
11324 MATH345-04 SPRING-14 NA
11324 ENG322-11 SPRING-14 NA
11892 CHEM218-05 SPRING-14 NA
11892 ENG322-11 SPRING-14 NA
11892 CIS431-01 SPRING-14 NA
10345 ENG322-07 SPRING-14 NA

All of the relationships are 1:M. The relationships may be written as follows:

COURSE generates CLASS. One course can generate many classes. Each class is
generated by one course.

CLASS is referenced in ENROLL. One class can be referenced in enrollment many
times. Each individual enrollment references one class. Note that the ENROLL entity
is also related to STUDENT. Each entry in the ENROLL entity references one student
and the class for which that student has enrolled. A student cannot enroll in the same
class more than once. If a student enrolls in four classes, that student will appear in

the ENROLL entity four times, each time for a different class.

STUDENT is shown in ENROLL. One student can be shown in enrollment many
times. (In database design terms, “many” simply means “more than once.”) Each
individual enrollment entry shows one student.

7. Create the basic Crow’s Foot ERD for Tiny College.

The Crow’s Foot model is shown in Figure P2.7a.

Figure P2.7a The Crow’s Foot Model for Tiny College

COURSE ~ generates | CLASS
is referenced in
< shoun i
STUDENT H LU | EnroLL

The Chen model is shown in Figure P2.7b.

Figure P2.7b The Chen Model for Tiny College

1 M
COURSE @ CLASS

1

M M

1
STUDENT ENROLL

8. Create the UML class diagram that reflects the entities and relationships you
identified in the relational diagram.

The OO model is shown in Figure P2.8.

Figure P2.8a The OO Model for Tiny College

COURSE ENROLL STUDENT CLASS
CRS_CODE C ENROLL_SEMESTER C STU_NUM C CLASS CODE C
CRS_DESCRIPTION C ENROLL_GRADE © STU_LNAME c CLASS_DAYS c
CRS_CREDIT N CLASSES: STU_LFNAME C CLASS TIME C

M STU_INITIAL C CLASS_ ROOM C
CLASSES: CLASS
M STU_DOB D COURSES:
CLASS - ENROLLMENT:
STUDENTS: :
M COURSE
STUDENT ENROLL
ENROLLMENT:
Note: C = Character M
D = Date ENROLL
N = Numeric
Figure P2.8b The UML Model for Tiny College
STUDENT
STU_NUM
-STU_LNAME
CLASS _STU_FMAME
COURSE CLASS CODE ENROLL LSTU_INIT
CRS_CODE CRS CODE .sTU_DOB
-DEPT_CODE CLASS_SECTION :(s:#ﬁgfu_umriqm .STU_HAS
-CRS_DESCRIPTION CLASS_TIVE ENROLL GRADE -STU_CLASS
-CRS_CREDIT 1.1 0% |CLASS ROCKM 1.1 0.* — 0.* L1 |sTU GRA
-PROF_MUM .STU_TRANSFER
.DEPT_CODE
.STU_PHONE
-EPROF_MUM

