Answers to Review Questions
1. What is an entity supertype, and why is it used?

An entity supertype is a generic entity type that is related to one or more entity subtypes,
where the entity supertype contains the common characteristics and the entity subtypes
contain the unique characteristics of each entity subtype. The reason for using
supertypes is to minimize the number of nulls and to minimize the likelihood of
redundant relationships.

2. What kinds of data would you store in an entity subtype?
An entity subtype is a more specific entity type that is related to an entity supertype,
where the entity supertype contains the common characteristics and the entity subtypes
contain the unique characteristics of each entity subtype. The entity subtype will store
the data that is specific to the entity; that is, attributes that are unique the subtype.

3. What is a specialization hierarchy?

A specialization hierarchy depicts the arrangement of higher-level entity supertypes
(parent entities) and lower-level entity subtypes (child entities). To answer the question
precisely, we have used the text’s Figure 5.2. (We have reproduced the figure on the
next page for your convenience.) Figure 5.2 shows the specialization hierarchy formed
by an EMPLOYEE supertype and three entity subtypes—PILOT, MECHANIC, and
ACCOUNTANT.

SUPERTYPE ———jp EMPLOYEE D=5 =it =iy
PK |EMP_NUM PK.FK1 | EMP_NUM
has PK DPNT_NUM
- 0% S—
Shared EMP_LNAME !
Attributes EMP_FNAME il
.) . EMP_INITIAL DPNT_LNAME
{Attributes inherited EMP HIRE DATE DPNT_RELATION
by all subtypes) EMP TYPE Inherited
- Relationship

Category Symbol

Disjoint/Overlapping Constraint (d / o) /
Hd } EMP_TYPE -l Subtype Discriminator

Partial/Complete Constraint —

“Pl'l iiMI’I HAH’
FILOT MECHANIC ACCOUNTANT
PK,FK1 |EMP_NUM PK,FK1 |EMP_NUM PK,FK1 | EMP_NUM
Unique
PIL_LICENSE MEC_TITLE ACT_TITLE Attributes
PIL_RATINGS MEC_CERT ACT_CPA_DATE (Attributes unigue
PIL_MED_TYPE fo subtypes)
SUBTYPES

(Text) FIGURE 5.2 A Specialization Hierarchy

The specialization hierarchy shown in Figure 5.2 reflects the 1:1 relationship between
EMPLOYEE and its subtypes. For example, a PILOT subtype occurrence is related to
one instance of the EMPLOYEE supertype and a MECHANIC subtype occurrence is
related to one instance of the EMPLOYEE supertype.

. What is a subtype discriminator? Given an example of its use.

A subtype discriminator is the attribute in the supertype entity that is used to determine
to which entity subtype the supertype occurrence is related. For any given supertype
occurrence, the value of the subtype discriminator will determine which subtype the
supertype occurrence is related to. For example, an EMPLOYEE supertype may
include the EMP_TYPE value “P” to indicate the PROFESSOR subtype.

. What is an overlapping subtype? Give an example.

Overlapping subtypes are subtypes that contain non-unique subsets of the supertype
entity set; that is, each entity instance of the supertype may appear in more than one
subtype. For example, in a university environment, a person may be an employee or a
student or both. In turn, an employee may be a professor as well as an administrator.
Because an employee also may be a student, STUDENT and EMPLOYEE are
overlapping subtypes of the supertype PERSON, just as PROFESSOR and
ADMINISTRATOR are overlapping subtypes of the supertype EMPLOYEE. The

text’s Figure 5.4 (reproduced next for your convenience) illustrates overlapping
subtypes with the use of the letter O inside the category shape.

PERSON
PK |P_ID

P_LNAME
P_FNAME
P_IS_EMP
P_IS_STU

P_IS_EMP { 8] :| P_IS_STU

EMPLOYEE STUDENT
PK.FK1 |PID PK,FK1 [P_ID
EMP_HIRE_DATE STU MAJOR
EMP_IS_ADM STU TYPE
EMP_IS_PROF -
EMP_IS_ADM t?l EMP_IS_PROF {f i STU_TYPE
[| |]
ADMINISTRATOR PROFESSOR GRADUATE UNDERGRAD
PK,FK1 |P_ID PK.FK1 |P_ID PK,FK1 |P_ID PK,FK1 [P_ID
ADM_TITLE PROF_RAMNK GRAD_THESIS UND_HOURS

(Text) FIGURE 5.4 Specialization Hierarchy with Overlapping
Subtypes

6. What is the difference between partial completeness and total completeness?

Partial completeness means that not every supertype occurrence is a member of a
subtype; that is, there may be some supertype occurrences that are not members of any
subtype. Total completeness means that every supertype occurrence must be a member
of at least one subtype.

For questions 7 — 9, refer to Figure Q5.7
FIGURE Q5.7 The PRODUCT data model

PRODUCT

PK |Prod Num

Prod_Title
Prod_ReleaseDate
Prod_Price
Prod_Type

! :I‘) Prod_Type

BOOK cD MOVIE

PK,FK1 |Prod Num PK,FK1 |Prod Num PK,FK1 |Prod Mum

Book_CoverType CD_Genre Movie_Rating
Book_PageCount CD_Artist Movie_Director

7. List all of the attributes of a movie.

Recall that the subtype inherits all of the attributes and relationships of the supertype.
Therefore, all of the attributes of a subtype include the common attributes from the
supertype plus the unique (unique to that subtype) attributes from the subtype. All of
the attributes of a movie would be:
e Prod_Num
Prod_Title
Prod_ReleaseDate
Prod_Price
Prod_Type
Movie_Rating
Movie_Director

8. According to the data model, is it required that every entity instance in the
PRODUCT table be associated with an entity instance in the CD table? Why or
why not?

No. The completeness constraint for the data model shows a total completeness
constraint from PRODUCT to the subtypes. However, the total completeness
constraint indicates that every instance in the supertype (PRODUCT) must be
associated with one row in some subtype, not all subtypes. Since the subtypes are
designated as disjoint, or exclusive, then every row in the supertype is associated a row

10.

11.

in only one subtype. For some products that subtype will be CD, but for other products
the subtype will be either Movie or Book.

Is it possible for a book to appear in the BOOK table without appearing in the
PRODUCT table? Why or why not?

No. Subtypes can only exist within the context of a supertype.

What is an entity cluster, and what advantages are derived from its use?

An entity cluster is a “virtual” entity type used to represent multiple entities and
relationships in the ERD. An entity cluster is formed by combining multiple interrelated
entities into a single abstract entity object. An entity cluster is considered “virtual” or
“abstract” in the sense that it is not actually an entity in the final ERD, but rather a
temporary entity used to represent multiple entities and relationships with the purpose
of simplifying the ERD and thus enhancing its readability.

What primary key characteristics are considered desirable? Explain why each
characteristic is considered desirable.

Desirable PK characteristics are summarized in the text’s Table 5.3, reproduced below
for your convenience. The table also includes the reason why each characteristic is

desirable. (See the Rationale column.)

PK Characteristic

Rationale

Unique values

The PK must uniquely identify each entity instance. A primary key
must be able to guarantee unique values. It cannot contain nulls.

Nonintelligent

The PK should not have embedded semantic meaning. An attribute
with embedded semantic meaning is probably better used as a
descriptive characteristic of the entity rather than as an identifier. In
other words, a student ID of “650973” would be preferred over
“Smith, Martha L.” as a primary key identifier.

No change over time

If an attribute has semantic meaning, it may be subject to updates.
This is why names do not make good primary keys. If you have
“Vickie Smith” as the primary key, what happens when she gets
married? If a primary Kkey is subject to change, the foreign key values
must be updated, thus adding to the database work load. Furthermore,
changing a primary key value means that you are basically changing
the identity of an entity.

Preferably single-attribute

A primary key should have the minimum number of attributes
possible. Single-attribute primary keys are desirable but not required.
Single-attribute primary keys simplify the implementation of foreign
keys. Having multiple-attribute primary keys can cause primary keys
of related entities to grow through the possible addition of many

12.

attributes, thus adding to the database work load and making
(application) coding more cumbersome.

Preferably numeric

Unique values can be better managed when they are numeric because
the database can use internal routines to implement a “counter-style”
attribute that automatically increments values with the addition of
each new row. In fact, most database systems include the ability to
use special constructs, such as Autonumber in MS Access, to support
self-incrementing primary key attributes.

Security complaint

The selected primary key must not be composed of any attribute(s)
that might be considered a security risk or violation. For example,
using a Social Security number as a PK in an EMPLOYEE table is
not a good idea.

TABLE 5.3 Desirable Primary Key Characteristics

Under what circumstances are composite primary keys appropriate?

Composite primary keys are particularly useful in two cases:

e As identifiers of composite entities, where each primary key combination is
allowed only once in the M:N relationship.

e As identifiers of weak entities, where the weak entity has a strong identifying
relationship with the parent entity.

To illustrate the first case, assume that you have a STUDENT entity set and a CLASS
entity set. In addition, assume that those two sets are related in a M:N relationship via
an ENROLL entity set in which each student/class combination may appear only once
in the composite entity. The text’s Figure 5.6 (reproduced here for your convenience)
shows the ERD to represent such a relationship.

STUDENT ENROLL CLASS

PK |STU_NUM e it b PK,FK1 | CLASS CODE - ; PK |cLASS coDE
-H—lmm-OGPK,FKz STU _NUM B

STU_LNAME CRS_CODE
STU_FNAME ENROLL_GRADE CLASS_SECTION
STU_INIT

Database name: Ch06_TinyCollege

Table name: STUDENT Table name: CLASS

(first four fields) Tahble name: ENROLL (first three fields)
STU_NUM | STU_LMAME | STU_FNAME | STU_INIT | CLASS_CODE | STU_NUM | ENROLL_GRADE | CLASS_CODE | CRS_CODE | CLASS_SECTION |

321452 Bowser William C 10014 321452 C 10012 ACCT-211 A

324257 Smithson Anne K 10014 324257 B 10013 ACCT-211 2

324258 Brewer Juliette 10018 321452 A 10014 ACCT-211 3

gg:g?g gb’_?;ski ‘J'V:"ef g 10018 324257 B 10015 ACCT-212 4

Ll ohn 10021 321452 C 10016 ACCT-212 2

324774 Kainge Haphael E 10021 324257 C 10017 as20 1

324291 Robeitzon Gerald T

324293 Smith John B ok -0 2

10019 cs220 3

10020 cs-420 1

10021 GM-261 1

10022 GIM-261 2

10023 omM-382 1

10024 Qm-382 2

10025 MATH-243 1

(Text) FIGURE 5.6 M:N Relationship Between Student and Class

As shown in the text’s Figure 5.6, the composite primary key automatically provides
the benefit of ensuring that there cannot be duplicate values—that is, it ensures that the
same student cannot enroll more than once in the same class.

In the second case, a weak entity in a strong identifying relationship with a parent entity
is normally used to represent one of two cases:

1. Areal-world object that is existent dependent on another real-world object. Those
types of objects are distinguishable in the real world. A dependent and an employee
are two separate people who exist independent of each other. However, such
objects can exist in the model only when they relate to each other in a strong
identifying relationship. For example, the relationship between EMPLOYEE and
DEPENDENT is one of existence dependency in which the primary key of the
dependent entity is a composite key that contains the key of the parent entity.

2. A real-world object that is represented in the data model as two separate entities
in a strong identifying relationship. For example, the real-world invoice object is
represented by two entities in a data model: INVOICE and LINE. Clearly, the
LINE entity does not exist in the real world as an independent object, but rather as
part of an INVOICE.

In both cases, having a strong identifying relationship ensures that the dependent entity
can exist only when it is related to the parent entity. In summary, the selection of a
composite primary key for composite and weak entity types provides benefits that
enhance the integrity and consistency of the model.

13.

14.

15.

16.

What is a surrogate primary key, and when would you use one?

A surrogate primary key is an “artificial” PK that is used to uniquely identify each
entity occurrence when there is no good natural key available or when the “natural” PK
would include multiple attributes. A surrogate PK is also used if the natural PK would
be a long text variable. The reason for using a surrogate PK is to ensure entity integrity,
to simplify application development — by making queries simpler — to ensure query
efficiency — for example, a query based on a simple numeric attribute is much faster
than one based on a 200-bit character string -- and to ensure that relationships between
entities can be created more easily than would be the case with a composite PK that
may have to be used as a FK in a related entity.

When implementing a 1:1 relationship, where should you place the foreign key if
one side is mandatory and one side is optional? Should the foreign key be
mandatory or optional?

Section 5.4.1 provides a detailed discussion. The text’s Table 5.5, reproduced here for
your convenience, shows the rationale for selecting the foreign key in a 1:1 relationship
based on the relationship properties in the ERD.

ER Relationship
Constraints
I One side is mandatory and | Place the PK of the entity on the mandatory

Case Action

the other side is optional. side in the entity on the optional side as a
FK and make the FK mandatory.
I Both sides are optional. Select the FK that causes the fewest number

of nulls or place the FK in the entity in
which the (relationship) role is played.

i Both sides are mandatory. | See Case Il or consider revising your model
to ensure that the two entities do not belong
together in a single entity.

TABLE 5.5 Selection of Foreign Key in a 1:1 Relationship

What are time-variant data, and how would you deal with such data from a
database design point of view?

As the label implies, time variant data are time-sensitive. For example, if a university
wants to keep track of the history of all administrative appointments by date of
appointment and date of termination, you see time-variant data at work.

What is the most common design trap, and how does it occur?
A design trap occurs when a relationship is improperly or incompletely identified and

therefore, it is represented in a way that is not consistent with the real world. The most
common design trap is known as a fan trap. A fan trap occurs when you have one entity

in two 1:M relationships to other entities, thus producing an association among the
other entities that is not expressed in the model.

